I was not expecting my recent reading of an article on femtosecond reaction kinetics to produce another discussion of quorum sensing, biofilms and vitamins. The idea behind the article was to identify new targets for drug design based on the ephemeral transition states that occur as enzymes bind substrates, stabilize transition states and yield product molecules. Drugs that mimic the transition states make good enzyme inhibitors. One of the target enzymes for the control of disease is an enzyme, MTAN, involved in the synthesis of quorum sensing molecules that orchestrate the construction of common biofilms. The idea is to inhibit MTAN and also avoid selection for antibiotic resistance. Unfortunately, targeting quorum sensing molecules also may produce vitamin deficiencies, since many of these molecules, in this case vitamin K, are also quorum sensing molecules.
Drugs have too many Side EffectsSpecificity in the binding of molecules to the thousands of proteins that are coded by the ca. 20,000 human genes depends on a very tight fit between the molecular "key" and the binding site "lock" of the protein. Just as in physical world, a small key/drug molecule with limited surface detail is not as safe/specific as a larger key with many surface features, and a larger lock/enzyme active site that is harder to pick/has fewer interactions with random enzymes. Unfortunately, most drugs are small molecules with limited surface features that make them like molecular skeleton keys that produce many side effects by interacting with unintended proteins/enzymes.
Transition States are more SpecificA recent focus on drug research is to exploit molecular computation and modeling to design molecules that will bind to the part of an enzyme that actually participates in binding substrates and catalyzing chemical reactions. These designed molecules can interact with an expanded region of the enzyme and bind more strongly than the normal substrate. The designed molecules can be very effective inhibitors that will not react as nonspecifically as inhibitors identified by trial an error, e.g. statins.
Biofilm Inhibitors are Targets for Antibiotic DevelopmentThe enzymes involved in the synthetic pathways of biofilm quorum sensing signals have been identified and powerful inhibitors of some of these enzymes have now been designed and synthesized. These inhibitors are very effective in inhibiting biofilm formation by some common bacterial pathogens (and essential gut flora.)
Biofilm Inhibitors will also Block Vitamin Production in Gut BiofilmsThe new biofilm inhibitor antibiotics may have enhanced specificity, but they target enzymes that also provide essential functions in biofilms that are needed for healthy gut and immune system function. Many of the vitamins that are produced by gut flora are also quorum sensing signal molecules in healthy gut biofilms. Thus, blocking MTAN to block biofilm formation of a pathogen, will also block gut synthesis of vitamin K, which is made in gut bacteria using the MTAN pathway. These inhibitors would be expected to be particularly damaging to the specialized gut flora of breastfed babies, since these gut bacteria are known producers of vitamin K.